Forecasting Stock Returns Using Genetic Programming in C++
نویسنده
چکیده
This is an investigation of forecasting stock returns using genetic programming. We first test the hypothesis that genetic programming is equally successful in predicting series produced by data generating processes of different structural complexity. After rejecting the hypothesis, we measure the complexity, of thirty-two time series representing four different frequencies of eight stock returns. Then using symbolic regression, it is shown that less complex high frequency data are more predictable than more complex low frequency returns. Although no forecasts are generated here, this investigation provides new insights potentially useful in predicting stock prices.
منابع مشابه
Using Genetic Algorithm in Solving Stochastic Programming for Multi-Objective Portfolio Selection in Tehran Stock Exchange
Investor decision making has always been affected by two factors: risk and returns. Considering risk, the investor expects an acceptable return on the investment decision horizon. Accordingly, defining goals and constraints for each investor can have unique prioritization. This paper develops several approaches to multi criteria portfolio optimization. The maximization of stock returns, the pow...
متن کاملExpansionary-contradictory Policies in Stock Companies Using Left and Right Returns to Scales in Data Envelopment Analysis Models
The purpose of this paper is to evaluate the returns to scale of the Tehran Stock Exchange based on new models in data envelopment analysis. Using this assessment, it is possible to judge the application of contradictory or expansion policies in stock companies. To this end, there is a need for models in the data envelopment analysis that can assess the left and right returns to scales of the d...
متن کاملThe Stock Returns Volatility based on the GARCH (1,1) Model: The Superiority of the Truncated Standard Normal Distribution in Forecasting Volatility
I n this paper, we specify that the GARCH(1,1) model has strong forecasting volatility and its usage under the truncated standard normal distribution (TSND) is more suitable than when it is under the normal and student-t distributions. On the contrary, no comparison was tried between the forecasting performance of volatility of the daily return series using the multi-step ahead forec...
متن کاملForecasting the Tehran Stock market by Machine Learning Methods using a New Loss Function
Stock market forecasting has attracted so many researchers and investors that many studies have been done in this field. These studies have led to the development of many predictive methods, the most widely used of which are machine learning-based methods. In machine learning-based methods, loss function has a key role in determining the model weights. In this study a new loss function is ...
متن کاملForecasting Stock Market Using Wavelet Transforms and Neural Networks: An integrated system based on Fuzzy Genetic algorithm (Case study of price index of Tehran Stock Exchange)
The jamor purpose of the present research is to predict the total stock market index of Tehran Stock Exchange, using a combined method of Wavelet transforms, Fuzzy genetics, and neural network in order to predict the active participations of finance market as well as macro decision makers.To do so, first the prediction was made by neural network, then a series of price index was decomposed by w...
متن کامل